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Received 29 April 2006, in final form 13 June 2006
Published 21 July 2006
Online at stacks.iop.org/JPhysCM/18/7063

Abstract
Recent experiments have demonstrated the possibility of ultrafast non-thermal
control of magnetization in rare-earth orthoferrites and ferrimagnetic garnet
films via circularly polarized femtosecond laser pulses. Single and double pump
pulses set up ultrafast magnetic fields via the inverse Faraday effect, thereby
non-thermally exciting spin dynamics. A theoretical study of coherent control
of the magnetization in rare-earth orthoferrites is performed by considering the
effect of multiple pulses. The investigation is based on a model for orthoferrites
recently proposed for the study of the inverse Faraday effect in the case of a
single pump pulse. In the linear regime without damping, interferential effects
take place: in-phase pulses induce a coherent enhancement of magnetization.
The role of relaxation and nonlinearity is studied in relation to their capability
of hampering coherent manipulation of magnetization. After many pulses, the
effect of damping induces a stationary behaviour with a periodicity determined
by the separation time between successive pulses. Due to nonlinear effects,
the magnetization can be characterized by complex beating patterns whose
amplitude and periodicity depend on the intensity of exciting pulses.

1. Introduction

In recent years the tremendous increase in speed of magneto-optic devices and in magnetic
storage density has triggered many studies aimed at understanding the mechanisms of
magnetization dynamics and switching on timescales of a picosecond or less. Ultrafast optical
laser pulses are currently used to manipulate the magnetization on the scale of a few hundred
femtoseconds. Actually, a significant demagnetization of metallic ferromagnetic compounds
can be induced by the absorption of the laser light on this short timescale [1–4]. In metals the
light absorption gives rise to a rapid increase of temperature and the electrons are excited to
high energy bands. Due to inter-particle interaction, during the relaxation the electrons rapidly
lose their coherence and the magnetization can only follow the thermal behaviour. Therefore,
during this process, the magnetization cannot be controlled.
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Recently, the ultrafast non-thermal control of magnetization has become feasible in
insulating canted antiferromagnets by using circularly polarized femtosecond laser pulses [5].
As a result of the inverse Faraday effect, these pulses set up a magnetic field (of the order of
0.5 T) directed along the wavevector of the radiation and proportional to its intensity [6, 7].
The pulses non-thermally excite the nearly transparent system and coherently control the spin
dynamics. Stimulated by these results, a theoretical study of magnetization dynamics in rare-
earth orthoferrites was performed by solving Landau–Lifshitz–Gilbert equations [8]. This
approach provided results compatible with experimental findings.

The inverse Faraday effect also plays a role in the femtosecond photomagnetic switching
of spins in ferromagnetic garnet films [9]. The coherent optical control of the magnetization
of these compounds has been demonstrated by employing double pump pulses in rapid
succession [10]. In this experiment two circularly polarized pump pulses with opposite
helicities and almost equal powers were used. Depending on the phase of the magnetization
at the time when the second pulse arrives, stopping of the dynamics as well as doubling
of the amplitude can be achieved. Another example of optical control could take place in
antiferromagnets: a theoretical proposal was made for ultrafast all-optical magnetic switching
by using shaped short laser pulses [11]. These effects open exciting possibilities to manipulate
directly and coherently spin dynamics by using multiple laser pulses.

In order to obtain a deeper understanding of the coherent control of magnetization
dynamics, in this paper simulations are discussed for double and multiple pulses. The studied
systems are rare-earth orthoferrites. The magnetization dynamics of these compounds is studied
employing an approach that has been recently proposed for the analysis of inverse Faraday
effect due to a single pump pulse [8]. The dynamical behaviour is determined by solving
two coupled sublattice nonlinear Landau–Lifshitz–Gilbert equations. Exploiting the inverse
Faraday effect, the light pulses act on the magnetic system as ultrafast magnetic field pulses.
The solution of the linearized equations is also studied since it provides a good approximation
for the magnetization in the regime of small field intensities and short times (of the order of ten
picoseconds). Finally, the effect of weak damping is investigated since it is the most interesting
for experiments involving the inverse Faraday effect and coherent interferential patterns are not
completely destroyed.

First the excitation by double pulses is analysed. In the absence of damping, there is
doubling or vanishing of the magnetization if the second pulse is in phase or out of phase with
the magnetization, respectively. Relaxation weakens coherent effects and causes a reduction
of the amplitude. The vanishing of the signal in the out-of-phase case is no longer achieved
after the second pulse. However, if the intensity of the second pulse is decreased by an amount
depending on the damping constant, the magnetization can vanish. Therefore, even in the
presence of relaxation, a certain degree of control can be obtained.

For fields with intensity up to some teslas, nonlinear effects provide no contribution in
the case of double pulses. When multiple pulses excite the system, nonlinear effects become
important for smaller fields and hinder the possibility of coherent control. Different physical
regimes can be analysed. In the linear regime without damping, in-phase pulses induce an
increase of the magnetization by 100% after any excitation (pure coherent control). The effect
of damping in the linear regime at first causes a reduction of the amplitude, but, after many
pulses, the response enters a stationary regime. The magnetization shows a periodicity induced
by the separation time between consecutive pulses and its amplitude depends on the damping
time. Nonlinearity affects the magnetic response of the system after many pulses for field
amplitudes of fractions of a tesla and after a few pulses for intensities of the order of 1 T. The
magnetization is characterized by complex beating patterns whose amplitude and periodicity
depend on the intensity of the exciting pulses. Finally, the combined role of nonlinearity and
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damping is analysed. After many pulses, a stationary solution characterizes the behaviour of
the magnetization as in the linear regime. However, due to nonlinearity, saturation effects on
the amplitude are present for fields with intensity of the order of 1 T. On the scale of hundred
picoseconds in the presence of nonlinear effects, the coherent control of magnetization turns
out not to be trivial even for magnetic field pulses whose intensity is not large.

The outline of this paper is as follows. In the next section the dynamical equations
are presented together with the analytic solution of the linearized system and the calculation
procedure. Sections 3 and 4 contain the discussion about the excitation by double and multiple
pulses, respectively. Section 5 provides a summary.

2. Dynamical equations and linearized solution

The inverse Faraday effect has been observed in insulating magnets, such as canted
antiferromagnetic dysprosium orthoferrites [5] and ferrimagnetic garnet films [9]. It has been
possible to show experimentally coherent optical control of magnetization via the inverse
Faraday effect with double pump pulses in garnet films [10] and rare-earth orthoferrites [12].
In this paper, rare-earth orthoferrites are studied as a model system.

Rare-earth orthoferrites are iron oxides with a perovskite-type structure. The spins of iron
ions are antiferromagnetically aligned through a strong exchange interaction which corresponds
to an exchange field E of approximately 6.4 × 106 Oe [13]. The spin canted magnetism with a
weak saturation moment is due to an antisymmetric exchange interaction whose magnitude is
expressed by the exchange field D of the order of 1.4 × 105 Oe [13]. The most stable phase is
called �4 and has a net magnetic moment. A free energy was proposed in a previous work [14]
in order to analyse resonances and susceptibility of the �4 phase. This theory was later used by
the authors of this paper in order to study the magnetization dynamics induced via the inverse
Faraday effect with a single pump pulse [8]. The normalized free energy V = F/M0, with M0

the modulus of the sublattice magnetization,

V = Vexc + Vani, (1)

consists of a part Vexc due to exchange interactions and a part Vani due to the anisotropy [14].
The exchange energy is given by the sum of a scalar and a pseudo-vector part

Vexc = E �R1 · �R2 + D(X1 Z2 − X2 Z1), (2)

where E and D are the symmetric and antisymmetric exchange fields, respectively, �R1 =
�M1/M0 ≡ (X1, Y1, Z1), and �R2 = �M2/M0 ≡ (X2, Y2, Z2). The anisotropic energy is

Vani = −Axx (X2
1 + X2

2) − Azz(Z 2
1 + Z 2

2). (3)

The anisotropy constants Axx and Azz are of the order of hundreds of Oersted and depend on
temperature. In the �4 phase of dysprosium orthoferrites at low temperature, Axx is estimated
to be about −640 Oe and Azz close to a value of −1540 Oe [8].

The equilibrium position of the magnetization in the �4 phase corresponds to a minimum
of the free energy (1). It is given by X eq

1 = −X eq
2 = cos(β0) and Z eq

1 = Z eq
2 = sin(β0), where

the small canting angle β0 is determined by

tan(2β0) = D

E + Axx − Azz
� D

E
= 0.022. (4)

Therefore, the sublattice magnetization vectors point in opposite directions and are slightly
noncollinear [14]. The saturation magnetization along the z-axis is

MS = | �M1 + �M2| = 2M0 sin(β0) ∼ 0.022M0, (5)

which is two orders of magnitude smaller than M0.
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The free energy V in (1) enters the nonlinear Landau–Lifshitz–Gilbert dynamical
equations

d �R1

dt
= −γ �R1 ∧

( �H(t) − �∇1V
)

+ α �R1 ∧ d �R1

dt
(6)

d �R2

dt
= −γ �R2 ∧

( �H(t) − �∇2V
)

+ α �R2 ∧ d �R2

dt
, (7)

where γ = 17.6 MHz Oe−1 is the gyroscopic ratio, and �∇1 and �∇2 are gradients with respect
to �R1 and �R2, respectively.

The quantity �H (t) in equations (6), (7) is the time-dependent magnetic field simulating
the effect of laser pulses via the inverse Faraday effect. The ultrafast magnetic field is optically
generated by a stimulated Raman-like coherent scattering mechanism via virtual states with
strong spin–orbit coupling [6, 7]. Within this second order process, the intermediate excited
states are coupled to states in the ground-state manifold via dipole matrix elements and the
strength of the laser electric field. The effective magnetic field is proportional to the modulus
square of the electric field, i.e. to the intensity of the laser pulse. In the numerical simulations,
pulses are directed along the propagation direction of the light and have Gaussian shapes:

�H (t) = k̂
N−1∑
n=0

Fn√
πτp

exp
[
−(t − Tn)

2/τ 2
p

]
, (8)

where k̂ defines the direction of the light wavevector, N is the number of pulses, Tn is the
centre of the pulse n, and τp indicates approximately the duration of each pulse. The pulses
are assumed equally spaced in time, i.e. Tn = nT , where T is the separation time between
successive pulses (with T � τp). Due to the dependence of the fields on intensity of the laser
light, there is no phase correlation between pulses.

Finally, in equations (6), (7) α is the Gilbert constant. This quantity takes into account
the damping of the oscillations, which, on the picosecond scale, is mainly caused by magnon–
magnon scattering [8]. The values of α range from about 0.4 × 10−4 at T = 50 K to 3 × 10−4

at T = 200 K [8]. Therefore, the oscillations of magnetization are not strongly damped.

2.1. Solution of the linearized system

In this subsection the focus is on the solution determined by linearizing equations (6), (7) and
the excitation of this linear system due to magnetic field pulses shaped as delta functions. This is
a good approximation in the linear regime since the temporal pulse length is much smaller than
the periods of the resonance modes. In the linearized form of equations (6), (7) the damping
is introduced by using the relaxation time approximation. Therefore, the relaxation towards
the equilibrium position is described by the damping time τ or, equivalently, the scattering rate
� = 1/τ related to the quantity α.

In order to take into account small deviations from the equilibrium, the standard approach
is to consider two separate coordinate systems, (S1, T1, Y1) and (S2, T2, Y2), which describe the
dynamics of �M1 and �M2, respectively [14]. The variables S1 and S2 are chosen in order to
coincide with the equilibrium positions of �M1 and �M2, respectively, so that

S1 = sin(β0)Z1 + cos(β0)X1, (9)

T1 = −cos(β0)Z1 + sin(β0)X1, (10)

and

S2 = sin(β0)Z2 − cos(β0)X2, (11)

T1 = cos(β0)Z2 + sin(β0)X2. (12)
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By linearizing the equations, the system is characterized by two modes, the quasi-antiferro
mode ωz and the quasi-ferro mode ωxy , involving cooperative motions of spins of the two
sublattices [14]. The first one, with frequency given by

ω2
z

γ 2
= 4E Axx + 4Axx (Axx − Azz) + D2 � 4E Axx + D2, (13)

corresponds to a dynamic with antiferromagnetic components along the x- and y-axis, and one
ferromagnetic component along the z-axis. The second mode, with frequency determined by

ω2
xy

γ 2
= 4E(Axx − Azz) + 4Axx (Axx − Azz), (14)

is characterized by magnetization vectors along the x- and y-directions. Both ωz and ωxy are
of the order of several cm−1.

When the field pulses are along the z-direction, only the quasi-antiferro mode is excited.
We get the following equations:

dDT

dt
= γ

(
2Axx + D2/2E

)
DY , (15)

dDY

dt
= γ (−2E)DT + 2γ cos(β0)Hze

(t−t0)/τ , (16)

with DT = (T1 − T2)e(t−t0)/τ , DY = (Y1 − Y2)e(t−t0)/τ , and t0 initial time. One can derive a
second order equation for DT :

d2 DT

dt2
+ ω2

z DT = 2γ 2 cos(β0)
(
2Axx + D2/2E

)
Hze

(t−t0)/τ . (17)

Starting from the equilibrium position for times smaller than t0 = 0−, the solution of the
equation is

DT = (−2γ )R cos(β0)

∫ t

t0

dt1 sin
[
ωz(t − t1)

]
Hz(t1)e

(t1−t0)/τ , (18)

with R given by

R =
√

2Axx + D2/2E

2E
. (19)

From the knowledge of DT we can derive DY , the variables T and Y , and then X and Z .
The linearized system can be solved for pulses with arbitrary shape. Simple solutions are

obtained when the magnetic field pulses are shaped as delta functions:

�H (t) = k̂
N−1∑
n=0

Fnδ(t − nT ). (20)

The analysis deals with the case of the field directed along the z-axis, since this corresponds to
the most important geometry used in the experimental set-up [5]. The field along this direction
is able to excite only the quasi-antiferro mode [8], whose oscillating behaviour is characterized
by the period

T0 = 2π

ωz
. (21)

The quantity T0 is of the order of a few picoseconds.
The ferromagnetic component of this mode is described by 	M̃Z (t), the magnetization

along the z-axis with respect to equilibrium 	MZ (t) in units of M0, i.e. 	M̃Z (t) =
	MZ (t)/M0, with the quantity 	M̃Z (t) given by

	M̃Z (t) = Z1(t) + Z2(t) − (Z eq
1 + Z eq

2 ). (22)
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In the time interval (J − 1)T < t < J T , with J an integer smaller than N , 	M̃Z is given by

	M̃Z (t) = 2 cos2(β0)RG J (t), (23)

where G J (t) is

G J (t) =
J−1∑
n=0

(γ Fn)e
−�(t−nT ) sin[ωz(t − nT )]. (24)

For t > (N − 1)T the solution is

	M̃Z (t) = 2 cos2(β0)RG N (t). (25)

The most important antiferromagnetic component of the quasi-antiferro mode is that along
the x-axis, which is described by 	 ÃX (t), the component with respect to the equilibrium in
units of M0 [8]. We define 	 ÃX (t) = 	AX (t)/M0 or equivalently

	 ÃX (t) = X1(t) − X2(t) − (X eq
1 − X eq

2 ). (26)

Using again the linearized form of equations (6), (7) and delta pulses, in the time interval
(J − 1)T < t < J T , 	 ÃX (t) is

	 ÃX (t) = 2 cos(β0)L J (t), (27)

where L J (t) is

L J (t) =
J−1∑
n=0

(γ Fn)e
−�(t−nT ) cos[ωz(t − nT )]. (28)

For t > (N − 1)T the solution is

	 ÃX (t) = 2 cos(β0)L N (t). (29)

2.2. Calculation procedure

The nonlinear dynamical equations (6) and (7) have been numerically integrated through a
fifth-order Runge–Kutta algorithm. Two methods have been followed. The first one has dealt
with the integration at fixed small time step of the order of fractions of femtosecond. The
second procedure has considered an adaptive grid with a time step depending on a tolerance
factor [15]. The tolerance factor valid for each time step has been varied from 10−5 to 10−6.
For both methods, the integration with multiple pulses up to times of the order of a hundred
picoseconds is quite demanding in comparison with the case of double pulses, but it is very
stable.

In the experiments the magnetic field pulses have amplitude of the order of 0.5 T and
time length of hundreds of femtoseconds [5, 9, 10]. Therefore, in the numerical calculations,
the Gaussian fields are of the form given in equation (8), with Fn = √

πτpAmp(Hn) and
τp = 200 fs. The magnetic fields are directed along the z direction and their amplitudes
Amp(Hn) range from 2000 to 16 000 Oe. We also consider fields a bit larger than those in
experiments in order to highlight the role of nonlinear effects in the case of multiple pulses.
In the simulations only the low-temperature values of the anisotropy constants given in the
previous section are included. Their small temperature-dependent change is neglected since it
is able to affect the frequency but not the amplitude of the magnetization [8]. The constant α

is varied from zero up to 10−4 in order to analyse the effect of the damping on the coherent
phenomena induced by multiple pulses. The separation time between two successive pulses
is between 3 and 4 T0, since these time intervals are close to those used in experimental
measurements [12].
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Since the time width τp of the single pulse is small on the scale of the mode periods,
in the linear regime, the numerical results for the magnetization are in good agreement with
those by equations (23) and (25) derived with delta pulses. The dynamics of magnetization
is strongly correlated with the behaviour of the antiferromagnetic vector even if they have
different magnitudes [8]. However, the solution of the linear system is not very accurate for the
antiferromagnetic vector. Hence, in all the following figures, the plotted results are obtained by
numerical integration.

In a previous study the role of nonlinear effects was checked by the authors of this paper
for the case of a single pulse [8]. In the absence of damping, weak nonlinear effects appeared
only for pulse intensities close to 20 T. These were much larger than fields induced via the
inverse Faraday effect in the experiments, so that we did not discuss nonlinear contributions.
In this case weak nonlinearity appeared as a distortion of the simple sinusoidal behaviour of
the linear regime. Only with further increase of the intensity did some saturation effects in the
amplitude of the ferromagnetic response become not negligible. In order to characterize the
presence of nonlinear contributions, the procedure was to study the decreasing quality of the fit
made with simple sinusoidal functions and the contribution by higher order harmonics of the
mode frequency by using the fast Fourier transform (FFT). The same procedure is followed in
this paper.

In the next section the effects of two Gaussian pulses along the z direction are discussed.
In the subsequent section the focus is on the excitation by multiple magnetic field pulses. In
both cases the system is in the �4 phase before the arrival of the pulses.

3. Double pulses

In this section the excitation of the magnetic system by two pulses is studied. The role of the
damping is analysed in this simple physical situation. Nonlinear effects provide no contribution
for fields with intensity up to some teslas. These effects will be investigated in the next section
as a consequence of multiple pulses.

The oscillating behaviour of the ferromagnetic vector along z due to double pulses is shown
in figure 1(a). In the absence of damping, after the first pulse, the magnetization has a sine-like
behaviour on the picosecond scale. The second pulse with the same amplitude as the first one
acts after a time T = Td ≈ 3T0, with T0 given in equation (21). It is in phase with the previous
signal, so that it gives rise to a perfect doubling of the magnetization. The symbol ≈ means
that the centre of the second Gaussian pulse occurs at the indicated time. This behaviour is
simply obtained from equation (25), which, without damping and for two equal pulses, yields
for Td = mT0, with m integer, G2(t) = 2γ F0 sin(ωz t).

The role of damping in the double-pulse excitation is also shown in figure 1(a). The value
α = 10−4 gives rise to weak damping during the first picoseconds. The fit of the first three
periods of the magnetization with a damped sine function provides an estimate for the damping
time: τ � 88 ps (equivalently � � 0.011 ps−1). After a time Td ≈ 3T0, a second equal pulse
excites the system. In the presence of small damping, the constructive effect is weakened and
the amplitude after three periods shows departure from the ideal value of α = 0. This behaviour
can be easily described by using equation (25), which gives for Td = mT0, with m integer,

G2(t) = 2γ F0 sin(ωz t)

[
e−�t

2
+ e−�(t−Td)

2

]
, (30)

where the damping terms between brackets control the reduction of the amplitude. There is also
an ‘asymmetry’ in the time intervals 0 < t < Td and Td < t < 2Td due to the role of damping.
For a time t̄ such that 0 < t̄ < Td, the amplitude decreases by the factor exp(−�t̄). Instead,
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Figure 1. (a) The variation 	MZ of the magnetization along the z-axis with respect to the
equilibrium value in units of MS as a function of time for two values of the damping constant
α. (b) The variation of the antiferromagnetic vector along the y-axis 	AY with respect to M0 as
a function of time for two values of the damping constant α. In both cases the amplitude of both
pulses is 2000 Oe and the dashed line shows the result without the effect of the second pulse.

for the time t̃ = t̄ + Td, the reduction is controlled by the factor 0.5 exp(−�t̄)[1 + exp(−�Td)]
smaller than exp(−�t̄). Therefore, there is an ‘accumulation’ of damping on the intervals of
length Td. This effect will be important when multiple pulses are considered in the presence of
damping.

The dynamics of the antiferromagnetic component 	AY shows features similar to those
of the ferromagnetic component. As shown in figure 1(b), there is a strong relationship
with the results of figure 1(a). Due to the coupling between the spins involved in the mode,
without damping, there is a doubling of the signal after the second pulse. This occurs even if
the response for the antiferromagnetic component is two orders of magnitude larger than the
magnetization and is more sensitive to the shape of the pulse [8]. It is important to notice that
the correlation between ferromagnetic and antiferromagnetic components will be maintained
even for multiple pulses. Therefore, in the following, only the behaviour of the ferromagnetic
component is shown.



Coherent control of magnetization via inverse Faraday effect 7071

0 10 20 30

-0.005

0.000

0.005

0.010

0.015

T
d
≈3.5 T

0

no double
α=0
α=10-4

∆Μ
z/M

S

t (ps)

Figure 2. The variation 	MZ of the magnetization along the z-axis with respect to the equilibrium
value in units of MS as a function of time for two values of the damping constant α. The amplitude
of both pulses is 2000 Oe and the dashed line shows the result without the effect of the second pulse.

The issue of destructive interference is addressed in figure 2. In this case the second pulse
acts at the time Td ≈ 3.5T0. In the absence of damping, the out-of-phase pulse causes the
vanishing of the magnetization. Actually, for two equal exciting pulses and Td = mT0 + T0/2,
with m integer, equation (25) yields exactly G2(t) = 0. As shown in figure 2, this condition
is lost because of damping. Moreover, the presence of damping induces an inversion in the
sign of the magnetization just after the second pulse. In order to explain the effect of damping,
equation (25) can again be used, giving for Td = mT0 + T0/2

G2(t) = −γ F0e−�t sin(ωz t)
(
e�Td − 1

)
. (31)

For the case reported in figure 2, T0 � 3.92 ps and Td ≈ 13.72 ps. For α = 10−4, one
gets �Td � 0.15, so that exp(�Td) − 1 � 0.16. Therefore, in the regime of weak damping
(�Td 
 1), the magnetization after the second pulse is not exactly zero, but is strongly
reduced and inverts its sign. This result is obtained when the two pulses have equal amplitudes:
F0 = F1. If the amplitude of the second pulse can be tuned, control of the magnetization can
be obtained even in the presence of damping. One can fix F1 = exp(−�Td)F0: this condition
provides the vanishing of the magnetization for t > Td. The price to pay is that the amplitude
of the second pulse has to depend on the excitation time Td and the strength of the damping.

The results discussed in this section can be related not only to experiments performed in
rare-earth orthoferrites but also in garnet films [10, 12]. Even though in garnets other magneto-
optic effects can contribute to magnetic response, the role of the inverse Faraday effect to
coherent phenomena seems to be pre-eminent. Considering that orthoferrites and garnets share
iron–oxygen complexes as fundamental magneto-optical units, theoretical results obtained for
orthoferrites also provide a qualitative picture for those in garnets. Finally, we notice that
it is possible to have constructive or destructive interferential effects, even if the separation
time and the helicity of the two pulses are fixed. In fact, an external static magnetic field
can be used to directly tune the frequency of the mode excited by the first pulse. This is
exploited in experiments [10]. This case could also be described within our approach since the
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Figure 3. The variation 	MZ of the magnetization along the z-axis with respect to the equilibrium
value in units of MS as a function of time for several values of the separation time Tm in the absence
of damping. The amplitude of each pulse is 2000 Oe.

dependence of the frequency of the quasi-antiferro mode on a static external magnetic field can
be derived [14].

In the following only the issue of weak damping will be addressed, since this is the
only regime related to experiments with inverse Faraday effect [5, 10]. The strong-damping
regime is not interesting since the condition �Td � 1 leads to a complete destruction of
interference effects and the relaxation of the magnetization toward the equilibrium position
is almost complete before the subsequent pulse arrives. Clearly, the aim is not to discuss
phenomena such as spin echo where interference effects do not disappear if damping is caused
by an inhomogeneous broadening [16].

4. Multiple pulses

In this section the analysis focuses on the effects of the excitation due to multiple pulses with
equal amplitudes (Fn = F0 for any n). In the first subsection the case of the absence of damping
is studied, in the second subsection the role of damping is analysed.

4.1. Absence of damping

In the absence of damping, multiple pulses with different separation times T = Tm give rise
to several patterns. The results for Tm changing from 3T0 up to 4T0 are shown in figure 3
considering a field intensity of 2000 Oe. The oscillations are sizable only for in-phase pulses,
Tm ≈ 3T0, and, after J pulses, the amplitude becomes J times larger for times up to 200 ps. On
the other hand, for out-of-phase pulses, 3T0 < Tm < 4T0, the amplitudes are small and show
a periodicity that depends on the time Tm of the pulses. For example, in the case Tm ≈ 3.5T0

the magnetization pattern has an effective period of 7T0. Therefore, the net effect of equally
spaced multiple excitations is to increase the selectivity of the system response [17]. One has
the possibility to amplify the signal generated by the first pulse (magnetization oscillations with
period T0) and minimize other effects. On the timescale of 100 ps, the only relevant amplitude
is that for Tm ≈ 3T0.
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The behaviour shown in figure 3 can be explained within the linear response. The results
are fully described via equation (25), which, without damping, yields for the time interval
(J − 1)Tm < t < J Tm

G J (t)

γ F0
= sin(ωz Tm J/2)

sin(ωz Tm/2)
sin

(
ωz

[
t − (J − 1)Tm

2

])
. (32)

Therefore the oscillations with frequency ωz are modulated by an amplitude term depending
on the time Tm and J . For Tm = i T0, with i integer, one obtains the simple result G J (t) =
J sin(ωz t). Therefore, if one uses N pulses, the amplitude of the magnetization increases by
a factor N in comparison with that after the first pulse. In the linear regime, this coherent
control is due to the constructive interference of all the pulses up to (N − 1)Tm. As soon as the
condition Tm = i T0 is not fulfilled, different kinds of amplitude modulation can be obtained
(see figure 3).

The discussion up to now has been limited to the linear regime. However, the dynamical
equations (6) and (7) are not linear. Hence, one expects that nonlinear effects can take
place after many in-phase pulses, when the amplitude of the magnetic response starts being
comparable with the magnetization MS. In figure 3, for times of the order of 200 ps, the in-
phase oscillations (Tm ≈ 3T0) show a saturation at a value that is about 0.15MS. Therefore,
even if the single pulses are small, after many excitations the nonlinearity of the equations
affects the magnetization. It is worth studying dynamics induced by in-phase pulses. We
have found that the saturation of the amplitude is only a transient part of the effect due to
nonlinearity. In figure 4(a) the results for Tm ≈ 3T0 and several intensities of the pulses are
presented. The effects of the nonlinear terms strongly affect the magnetization dynamics on
the picosecond scale. Due to nonlinear effects, the in-phase oscillations show complex beating
patterns. At fixed intensity, it has been possible to verify that, up to the nanosecond, the shape
of these patterns is periodically repeated. However, their amplitude is strongly dependent on
the intensity, which controls periodicity and length. Clearly nonlinear effects limit the coherent
control of magnetization.

In figure 4(b) the focus is on the plot corresponding to the multiple pulses with the largest
amplitude. The analysis of the oscillations reveals how the nonlinear effects give rise to these
complex behaviours. In the figure the arrows indicate the times when the pulses act on the
system. The horizontal bars denote the amplitude of the oscillations in the linear approximation.
For the first four pulses the amplitudes of the magnetization follow the linear regime increasing
at each step with a rate of 100%. However, the periods of the oscillations change after the
excitation of the fields and the equally spaced pulses do not excite the system perfectly in
phase. In order to analyse this effect, it is interesting to perform a fit of the oscillations in the
time intervals (J − 1)Tm < t < J Tm with the simple sine function A sin[π(t − tc)/w], where
A is the amplitude, tc is the time shift, and w is the half-period. After the first pulse the fit is
excellent (χ2 � 3 × 10−6) with tc � 0 ps and w � 1.96 ps. This corresponds to the result
of the linear regime. After the third pulse the fit gets worse (χ2 � 8.2 × 10−4) and provides
tc � −0.25 ps and w � 1.99 ps. Therefore there is a marked time shift of the initial oscillation
and an increase of the period of the oscillations. After the fifth pulse, the oscillations show only
two maxima, which are smaller than the value predicted by the linear response (the horizontal
bar is higher). The quality of the fit continues to decrease (χ2 � 3.8 × 10−3), and the estimates
are tc � −0.83 ps and w � 2.03 ps. Hence, after the fifth pulse, the time shift is close to T0/4
and the period has increased. This is in agreement with the fact that there are only two maxima.
Moreover, the value of the time shift is compatible with the periodicity of the pattern. Actually,
after the next pulse, the amplitudes of the oscillations can change their increasing trend and
start decreasing. After the seventh pulse, the amplitude is slightly smaller than that after the
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Figure 4. (a) The variation 	MZ of the magnetization along the z-axis with respect to the
equilibrium value in units of MS as a function of time for Tm ≈ 3.0T0 and several amplitudes
of the exciting field pulses. Every new curve is shifted from the previous one along the vertical
axis over 0.6. (b) The variation 	MZ of the magnetization along the z-axis with respect to the
equilibrium value in units of MS as a function of time for Tm ≈ 3.0T0 for field intensity equal to
16 000 Oe. Arrows indicate the times of pulse arrival.

third pulse, and the fit with the sine function has similar accuracy (χ2 � 5.2 × 10−4). The time
shift tc � 0.52 ps is positive and in modulus decreases in comparison with that after the fifth
pulse. The period is also decreasing: w � 1.99 ps. Therefore, there is a strong symmetry of the
pulses after and before the fifth one. After the tenth pulse the fit is excellent (χ2 � 3.2 × 10−6)
and the period shows a value characteristic of the linear regime (w � 1.96 ps). However, the
time shift is large: in fact, tc � 1.86 ps, of the order of T0/2. This means that the system is
ready to start a new cycle with increasing amplitudes. Actually, this occurs after the 11th pulse
with an amplitude not equal but very close to that after the first pulse. This pattern of cycles is
repeated up to 1 ns with negligible modifications. The same behaviour is also found for multiple
pulses with smaller amplitudes. However, as shown in figure 4(a), close to the maximum, the
saturation lasts for many cycles, and more slowly the amplitudes start decreasing.

Stimulated by these findings, an analysis of the oscillations based on the FFT has been
performed in any interval (J − 1)Tm < t < J Tm for amplitude equal to 16 000 Oe. Indeed, the
fit with the sine function gets worse after some pulses, since the components of the oscillations
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at zero and double frequency 2ωz become not negligible. In the worst case, i.e. after the fifth
pulse, the component at ωz is about 0.19 MS, that at zero frequency about 0.07 MS and that
at 2ωz is 0.06 MS. Therefore, the role of higher harmonics of the fundamental ωz and the
component at zero frequency gain importance close to the maximum of the pattern. This
explains the worst quality of the fit for this cycle. The same analysis shows similar results
for smaller amplitudes of the exciting pulses.

4.2. Presence of damping

In this subsection the discussion focuses on the role of the damping in the linear and non-linear
regimes when multiple pulses excite the system.

Unlike the case of two pulses, the damping can have profound effects on the magnetization
dynamics even if it is very small. Actually, the damping time should not be compared only with
the excitation time Tm of the pulses, but also with the duration time J Tm of J pulses. Even if
τ = 1/� is larger than Tm, after many pulses the damping time becomes smaller than J Tm.
As shown in figure 5(a), after the initial pulses the magnetization starts increasing as in the
linear regime in absence of damping. The only difference is that, after pulse J , the amplitude
is slightly smaller than J times the amplitude after the first pulse. However, after many pulses
the magnetization tends toward a stationary solution, i.e. it is the same after any exciting pulse.
This can be understood by using equation (23) valid in the linear regime. Actually, in the time
interval (J − 1)Tm < t < J Tm, one gets in the case of constructive interference, Tm = i T0,

G J (t)

γ F0
= e−�t

(
eJ Tm� − 1

)
(
eTm� − 1

) sin(ωz t). (33)

In the limit of small damping (�Tm 
 1) and after the initial pulses (J Tm 
 τ ), G J (t) is
approximated by

G J (t)

γ F0
� J

(
1 − �

[
t − Tm(J − 1)

2

])
sin(ωz t). (34)

Therefore, the amplitude depends on the exciting pulse J with a small decay due to damping.
However, as stressed in the case of double pumps, there is an ‘accumulation’ of damping over
the excitation cycles. This effect gives rise to another behaviour on longer times. Indeed, in the
same damping regime, after many pulses (J Tm � τ ),

G J (t)

γ F0
� 1

�Tm
e−�[t−Tm(J−1)] sin(ωz t). (35)

The amplitude becomes independent of the exciting pulse J : in fact, it is only determined by
the parameters Tm and �. For the case reported in figure 5, � � 0.011 ps−1 for α = 10−4 and
Tm ≈ 13.72 ps, so that 1/�Tm � 6.6. This value is in close agreement with the numerical
results of the magnetization on the scale of 100 ps shown in figure 5(a). Therefore, in the linear
regime, by manipulating the value of the excitation time Tm and choosing different damping
times, the amplitude of the magnetization can reach a fixed value. Even if incoherent, a control
of the magnetization is still feasible.

Finally, the discussion concerns the combined role of damping and nonlinearity. The
behaviour is more complex, but, after many pulses, the system is always characterized by a
stationary solution. As shown in figure 5(b), the amplitude of the pulses also plays an important
role. Actually, for small amplitudes of the pulses (2800 Oe), the effects of the nonlinearity are
not so important since they affect the magnetization at long times when the stationary solution
is already reached. For intermediate amplitudes of the excitation (5600 Oe), the effects due
to nonlinearity and damping are strongly mixed. Finally, for large amplitudes of the field
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Figure 5. (a) The variation 	MZ of the magnetization along the z-axis with respect to the
equilibrium value in units of MS as a function of time for Tm ≈ 3.0T0 and the amplitude 2000 Oe of
the exciting field pulses. (b) The variation 	MZ of the magnetization along the z-axis with respect
to the equilibrium value in units of MS as a function of time for Tm ≈ 3.0T0 and several amplitudes
of the exciting field pulses. Every new curve is shifted from the previous one along the vertical axis
over 0.3.

(11 300 Oe), the system shows the initial part of the pattern characteristic of the nonlinear
regime. However, the cycles with decreasing amplitudes are not completed since the damping
effect starts affecting the dynamics. There is also a saturation effect of the amplitude in the
stationary regime for large fields. Indeed, over long times, the amplitude of the magnetization
ranges from 0.057MS just after fields of 2800 Oe, to 0.11MS just after fields of 5600 Oe, then to
only 0.13MS for field amplitudes of 11 300 Oe. Therefore, passing from intermediate to strong
field pulses, no doubling of the amplitude is obtained in the stationary regime. The control of
magnetization is not trivial in the regime where damping and nonlinearity act together.

5. Summary and conclusion

Stimulated by experimental results showing ultrafast non-thermal control of magnetization by
ultrafast laser pulses, a theoretical study about coherent manipulation of magnetization has
been presented in this paper. Coupled sublattice nonlinear Landau–Lifshitz–Gilbert equations
have been solved within an approach that has been recently proposed for the analysis of inverse
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Faraday effect due to a single pump pulse in rare-earth orthoferrites [8]. The simulations have
considered the effect of double and multiple pulses. The non-linear dynamical equations have
been integrated through an optimized Runge–Kutta algorithm and analytical solutions of the
linearized system have been discussed in the case when the magnetic field pulses have the
shape of delta functions. The regime of weak damping has been studied due to its relation to
the experiments.

First, the effect of double pulses was studied in the absence of damping. The behaviour of
the magnetization is determined by the interference of the signals by the two pulses. Relaxation
weakens coherent effects, but it allows a certain degree of control of magnetization with out-
of-phase pulses. When multiple pulses excite the system in the linear regime without damping,
an increase of the magnetization by 100% is achieved after any excitation. The effect of
weak damping is not restricted to a decrease of the amplitude of magnetization. After many
pulses, there is an ‘accumulation’ of damping effects that gives rise to a stationary behaviour
of magnetization. The periodicity of magnetization is related to the separation time between
consecutive pulses. The possibility of coherent control of magnetization is not only hindered
by damping, but also by nonlinearity. The magnetic response of the system shows complex
behaviours with amplitudes and periodicities depending on the intensity of the exciting pulses.
Moreover, in the stationary regime induced by relaxation, a saturation effect characterizes the
amplitude of the magnetization because of nonlinear terms.

Coherent control discussed in this paper is due to effective magnetic fields generated by
light pulses via the inverse Faraday effect. Coherence effects can be also exploited in nuclear
magnetic resonance (NMR) with pulses in the range of radio frequencies or microwaves [16].
In NMR experiments one-photon magnetic dipole spin-flip transitions are involved in order
to stimulate spin precession. On the other hand, in optical experiments, spin precession
is triggered via two-photon processes, similar to stimulated Raman scattering. Spin-flip
transitions become allowed in electric-dipole approximation, thus should be more effective.
Birefringence effects could hinder complete coherent control of magnetization in rare-earth
orthoferrites; however, in optical experiments, manipulations of the laser pulses can be used in
order to drive the two-photon process.

As a result of this study, the experimental conditions and the timescales useful for coherent
manipulation can be specified. In rare-earth orthoferrites temperatures up to 100 K should not
destroy coherent effects on the timescale up to 100 ps. In the experiments the Faraday rotation
used to estimate magnetization dynamics shows nonthermal effects together with small thermal
features [5]. However, the difference between the Faraday rotations induced by right- and left-
handed polarized pulses minimizes nonthermal contributions. This difference can be properly
used to investigate coherent control even in the presence of multiple pulses.
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